EL FUTURO PODRIA SER MEJOR. FISICA CUANTICA Y SOCIOLOGIA.
Médico. Periodista Científico
Tiempo
de lectura: 15 minutos
Según la opinión del científico Rudolf Peierls, ex catedrático de física de la Universidad de Oxford quien considera a la biología como una rama de la física en el mismo sentido que considera a la química como una parte de la física, nuevos aspectos emergen cuando las estructuras llegan a ser suficientemente complejas como lo son los seres vivientes. En este sentido considera que no se habrán completado los fundamentos de la biología hasta que no se haya enriquecido el conocimiento de la física con algunos conceptos innovadores.
“Los Cuantos”
La palabra “cuanto” significa “cantidad” o “porción discreta”. En nuestra escala diaria estamos acostumbrados a la idea de que las propiedades de un objeto, tales como su tamaño, color, peso, temperatura y movimiento son todas ellas cualidades que pueden variar de un modo suave y continuo.
Sin embargo, a escala atómica las cosas son muy diferentes. Las propiedades de las partículas atómicas y subatómicas como su movimiento, energía y el momento angular no siempre presentan variaciones suaves, sino que, por el contrario, pueden variar en cantidades discretas.
Una de las hipótesis de la mecánica clásica era que las propiedades de la materia varían de modo continuo. Cuando los físicos descubrieron que esta noción no es cierta a escala atómica, tuvieron que desarrollar un sistema de mecánica completamente nuevo (la mecánica cuántica) para tener en cuenta al comportamiento atómico de la materia. La teoría cuántica es entonces, la teoría de la que deriva la mecánica cuántica.
Si se tiene en cuenta el éxito de la mecánica clásica en la descripción de la dinámica de toda clase de objetos, desde bolas de billar hasta estrellas y planetas, no es sorprendente que su sustitución por un nuevo sistema mecánico fuera considerada como una desviación revolucionaria. Sin embargo los físicos probaron inmediatamente la validez de la teoría mediante la explicación de un amplio rango de fenómenos que, de otro modo, serían incomprensibles; tanto que la teoría cuántica es frecuentemente citada como la teoría más exitosa jamás creada.
Max Planck |
En 1913 Niels Bohr propuso que los elementos atómicos están también “cuantizados”, en el sentido que pueden permanecer en ciertos niveles fijo sin perder energía. Si esto ocurriera en forma continua, los electrones atómicos, que están orbitando en torno al núcleo, perderían
Niels Bohr |
rápidamente energía y caerían siguiendo espirales hacia éste. Por lo tanto, cuando los electrones saltan de un nivel a otro, se absorbe o se emite energía electromagnética en cantidades discretas. Estos paquetes de energía son los fotones.
La razón por la que los electrones habrían de comportarse de este modo discontinuo fue puesta de manifiesto cuando se descubrió la naturaleza ondulatoria de la materia. Los electrones, como los fotones, pueden comportarse como ondas y como partículas, dependiendo de las circunstancias de cada caso. Pronto quedó claro que no sólo los electrones, sino todas las partículas subatómicas están sujetas a un comportamiento similar.
Las leyes tradicionales de la física fracasaban completamente en el micromundo de los átomos y de las partículas subatómicas.
Hacia la mitad de la década de 1920 la mecánica cuántica había sido desarrollada independientemente por Erwin Schrödinger y Werner Heisenberg para tener en cuenta esta dualidad onda – partícula.
La nueva teoría tuvo un éxito espectacular. Inmediatamente ayudó a los científicos a explicar la estructura de los átomos, la radioactividad, el enlace químico y los detalles de los espectros atómicos (incluyendo los efectos de los campos eléctricos y magnéticos).
Enrico Fermi |
Este catálogo de triunfos singulariza a la mecánica cuántica como una teoría verdaderamente notable: una teoría que describe correctamente el mundo a un nivel de precisión y detalles sin precedentes en la ciencia. Hoy en día, la gran mayoría de los físicos profesionales emplean la mecánica cuántica con completa confianza.
En el tradicional experimento de los fotones y el polarizador, cada vez que un fotón pasa a través del polarizador nos encontraremos en una situación paradójica. A un ángulo de 45°, dado que un fotón no puede dividirse en partes, cualquiera de ellos debe o bien pasar o bien quedar bloqueado dado que la luz transmitida tiene exactamente la mitad de intensidad que la luz original. Es decir que la mitad de los fotones deben ser transmitidos, mientras que la otra mitad quedan bloqueados. Pero ¿cuáles pasan y cuáles no?
Como se supone que todos los fotones de la misma energía son idénticos y, por lo tanto, indistinguibles, nos vemos obligados a concluir que la transmisión de fotones es un proceso puramente aleatorio. Aunque cualquier fotón tiene una probabilidad del 50 % de pasar, es imposible predecir cuáles de ellos en particular lo harán. Solamente pueden darse las probabilidades.
La conclusión en al ámbito de la física es intrigante e incluso desconcertante. Antes del descubrimiento de la física cuántica se suponía que el mundo era completamente predictible, al menos en principio. En particular, si se realizaban experimentos idénticos, se esperaban resultados idénticos.
Pero en el caso de los fotones y el polarizador, podría muy bien ocurrir que dos experimentos idénticos produjeran resultados diferentes, de modo que un fotón pasa a través del polarizador y otro queda bloqueado.
Generalmente, hasta que no se lleva a cabo una observación no puede saberse cuál será el destino de un fotón dado.
En 1924 Louis Víctor Pierre Raymond De Broglie (premio Nobel de Física en 1929) presentó una tesis de doctorado titulada “Investigaciones sobre la teoría de los cuantos” en la cual exponía una hipótesis muy audaz: si las ondas electromagnéticas estaban formadas por partículas ¿no podrían las partículas, a su vez, ser ondas electromagnéticas?
Víctor De Broglie |
Así pues, el electrón dejó de ser una partícula. Se prefirió considerarlo como una onda, como una vibración de energía. De Broglie supuso que los electrones fueran minúsculas condensaciones de energía dentro de la onda que los transportaba, sometidas a una turbulencia continua que las hacía saltar de una trayectoria a otra, pero siempre en el interior de la onda misma.
Ernest Rutherford |
Se parecía, en todo caso, a una serie de ondas concéntricas, vibrantes, con un diámetro cada vez mayor a medida que se alejaban del núcleo, y cada una de ellas representaba la onda de vibración del electrón en su órbita. Era una solución revolucionaria acorde con los nuevos datos experimentales.
John Bell, físico teórico en el Centro Europeo de Investigación Nuclear (CERN) de Ginebra, fue calificado por el físico de partículas del Berckeley Laboratory, Henry Stapp, por su Teorema de Bell como el resultado más profundo de la ciencia. Bell dice que puede verse en las ecuaciones de la Teoría de De Broglie que cuando sucedía algo en un punto las consecuencias se extendían inmediatamente sobre todo el espacio.
John Bell |
Estas ideas implican la existencia de un elemento de incertidumbre en el micromundo de los fotones, átomos y otras partículas. En 1927, Werner Heisenberg (Premio Nobel en 1932) cuantificó esta incertidumbre en su famoso principio de incertidumbre.
Una forma de expresar el principio de incertidumbre se refiere a los intentos de medir la posición y el movimiento de un objeto cuántico simultáneamente. Específicamente, si, por ejemplo, tratamos de localizar muy precisamente un electrón, nos vemos forzados a renunciar a la información sobre su momento.Recíprocamente, podemos medir el momento del electrón con mucha precisión, pero entonces su posición queda indeterminada. El mero acto de tratar de fijar un electrón en un lugar específico introduce una perturbación incontrolable e indeterminada en su movimiento y viceversa. Más aún, esta ineludible restricción sobre nuestro conocimiento de la posición y el movimiento de un electrón no es meramente consecuencia de una falta de destreza experimental: es inherente a la naturaleza. Está claro que el electrón sencillamente no posee posición y momento simultáneamente.
Werner Heisenberg |
El principio de incertidumbre debilitó el principio clásico de causalidad, base de toda la cosmovisión determinista y provocó controversias muy encendidas.
Si bien muchos científicos ya han visto la dificultad de llevar a otras escalas las explicaciones que son útiles para la escala atómica y subatómica, se complica y se entra en el campo filosófico cuando estas teorías son llevadas por ejemplo al nivel biológico.
Aún más podría serlo llevarla a la escala sociológica. Este escrito es una propuesta para quizás poder darnos una explicación de los fenómenos de incertidumbre que vemos que ocurren a nuestro alrededor: en las personas, las organizaciones y las sociedades.
Dice Deepack Chopra en La trascendencia del silencio: “es el punto desde el cual la conciencia humana cruza los límites cuánticos; es decir, abandona el mundo material y se sumerge en una región compuesta de energía e información, más allá del tiempo y el espacio. Actualmente, la física cuántica revela el universo como una red invisible en el cual todo está conectado y va fundiendo en lenta alquimia ciencia con espiritualidad. No obstante, eso todavía no ha ocurrido”.
¿Cómo ha cambiado la posibilidad de relacionarnos entre las personas, organizaciones, comunidades, países ?
Hay elementos como la comunicación y la información que se han visto incrementados en gran magnitud en las últimas décadas con la aplicación de la informática.
Según declaró Niels Bohr la física no nos dice nada de lo que es, sino de lo que podemos comunicarnos sobre el mundo. Una profunda consecuencia de las ideas de Bohr es que se altera el tradicional concepto occidental de la relación entre macro y micro, el todo y sus partes. Bohr aseguró que para que tenga sentido hablar de lo que un electrón está haciendo, antes debe especificarse el contexto experimental total. Así, la realidad cuántica del micromundo está inextrincablemente ligada con la organización del macromundo. En otras palabras, la parte no tiene sentido excepto en relación con el todo.
Este carácter holístico de la física cuántica ha encontrado también una favorable acogida entre algunos filósofos y religiosos. En los primeros momentos de la teoría cuántica muchos físicos, incluyendo a Erwin Schrödinger, se apresuraron a trazar un paralelismo entre el concepto cuántico del todo y la parte y el concepto oriental tradicional de la unidad armónica de la naturaleza.
La construcción del significado ha sido un tema fundamental de estudio por parte de los filósofos. Según Follesdal, filósofo noruego de la Universidad de Stanford, dice que significado es “el conjunto de toda la evidencia disponible para aquellos que se comunican”.
La idea esencial es la comunicación. Si vemos algo, pero no estamos seguros de si es realidad o sueño, no hay mejor verificación que el comprobar si alguien más lo ha notado y puede verificar las observaciones. Esto es esencial para distinguir entre realidad y sueños.
Pero otra cuestión es cómo convertimos esto en algo empírico. Podemos apoyarnos en el trabajo y los hallazgos del gran genetista y estadístico R. A. Fisher. Estos datan de 1922, cinco años antes del principio de incertidumbre y de la perspectiva moderna de la teoría cuántica. Fisher estaba estudiando la composición genética de las poblaciones en lo que se refiere a la probabilidad de ojos azules, de ojos verdes, de ojos marrones y renunció a utilizar estas probabilidades como una manera de distinguir una población de otra. Adoptó en su lugar las raíces cuadradas de las probabilidades o lo que él llamó las amplitudes de probabilidad. En otras palabras, descubrió que la amplitud de probabilidad mide la distinguibilidad.
La distinguibilidad constituye el punto central de lo que llamamos significado.
Deberíamos lograr la “distinguibilidad” de nuestras organizaciones de salud para que ellas tengan un “significado”. De hecho, aquéllas que han logrado distinguirse, tuvieron un significado para la comunidad que asisten.
El concepto de significado lo podemos describir como un producto que es el conjunto de toda la información intercambiada entre los que se comunican. Y esa información se retrotrae a un conjunto de muchos fenómenos cuánticos elementales.
Existe un área donde nuestras observaciones crean la realidad, como es en el de las relaciones humanas: cuando las personas se tornan conscientes unas de otras y se comunican, crean la realidad de la sociedad.
La noción de información activa propuesta por David Bohm, ex catedrático de física teórica en el Bribeck College de Londres, ya nos es familiar en las computadoras. Si alguien grita “fuego” todo el mundo se movería; así pues en los sistemas vivientes inteligentes y en las computadoras, la información activa es un concepto útil.
David Bohm |
En el mundo real de la física cuántica, ningún fenómeno elemental es un fenómeno hasta que el mismo es registrado.
Tradicionalmente pensamos que la evolución de los proyectos o el Plan Director de una organización en cuanto a la obtención de sus metas y objetivos tienen una evolución lineal.
Lo planeado, a veces se cumple, y nos sorprendemos cuando ello no ocurre. Es así como una vez más la realidad nos impone cambios, idas y venidas, avances y retrocesos inesperados en “saltos” o “cuantos” tal como se comportan en la escala subatómica.
Al retroceder por la coordenada de los objetivos, volvemos hacia atrás en la línea del tiempo. Este fenómeno estamos observando en muchas organizaciones donde debido a “saltos cuánticos” tenemos la sensación y muchas veces la certeza de que hemos retrocedido en el tiempo.
Erwin Schödinger |
Un gato está encerrado en una cámara de acero, junto a un diabólico dispositivo. En un contador Geiger hay un pedacito de una sustancia radiactiva, tan pequeño, que quizá en el transcurso de una hora se desintegre un átomo, pero también podría ocurrir la posibilidad con igual probabilidad que ninguno se desintegrara; si ocurre lo primero, se produce una descarga en el tubo y mediante un relay se libera un martillo que rompe un pequeño frasco de ácido cianhídrico. El gato moriría. Si se ha dejado que el sistema completo funcione durante una hora, diríamos que el gato vivirá si en ese tiempo no se ha desintegrado ningún átomo. En la primera posibilidad la desintegración atómica lo hubiera envenenado y en la segunda posibilidad el gato viviría.
El autor es:
Comentarios
Publicar un comentario
Por favor firme su comentario.
Muchas gracias.